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Abstract. We numerically investigate an S = 1/2 spin model, in which two dimerized antiferromagnetic
rings interact with each other ferromagnetically. It is shown that the order of the magnetoelastic transition
is strongly affected by the interring coupling J⊥ and there may exist a critical J∗

⊥ dividing the first-order
transition and the continuous transition.

PACS. 75.10.Jm Quantized spin models – 75.10.Pq Spin chain models – 75.30.Kz Magnetic phase
boundaries (including magnetic transitions, metamagnetism, etc.)

1 Introduction

In low-dimensional spin systems, magnetoelastic (ME)
instability, generally characterized by a lattice dimer-
ization, has attracted extensively attention [1–9]. This
phenomenon may be induced by spin-phonon interaction
which is often considered in the context of spin-Peierls
(SP) transition. In adiabatic limit, the lattice dimeriza-
tion may lower the total magnetic energy by a greater
amount than the increase in elastic energy due to lattice
deformation. Then the system will open an energy gap in
the spin excitation spectrum. Such a transition was first
predicted to occur in the infinite S = 1/2 Heisenberg an-
tiferromagnetic (AF) chain [1] and it was indeed observed
experimentally in the quasi-one-dimensional S = 1/2 com-
pound CuGeO3 [5]. Recently, in the mesoscopic magnetic
molecule Cu8 rings, the 63Cu NQR (nuclear quadrupole
resonance) spectrum shows four structurally nonequiva-
lent Cu ions [10], which is perhaps related to the ap-
pearance of dimerization. In theory, the ME transition is
strongly affected by the spin value and system size. In fi-
nite ring-shaped systems, there exists a critical spring con-
stant beyond which the symmetric phase is unstable. The
most interesting result is that there is a first order tran-
sition for the system with spin larger than one-half case
(exactly speaking, the ME transition in finite system is not
a real phase transition which is possible only in a infinite
system [11]), while for spin one-half system, the transition
is continuous, as the spring constant is reduced [6]. But in
infinite systems, the ME transition is possible for all half-
integer spins for arbitrarily large spring constant, and it
is absent for integer spins [7].
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The spin systems with interchain coupling have been
intensively considered in many theoretical works [12–22].
In the two-leg Heisenberg AF spin-ladder model (two cou-
pling AF spin chains with AF rung), it is shown the evi-
dence of a nonzero singlet-triplet energy gap for all finite
interchain coupling [12]. But for single spin-1/2 AF chain,
according to Haldane’s conjecture, the excitation spec-
trum is gapless [23]. For two-dimensional XY model, there
may exist a first order transition from dimerized phase to
uniform phase as the interchain coupling is larger than
zero [14]. The effects of interchain coupling on the spin
chains in quasi-one-dimensional system are intensively
studied because there are true materials with spin lad-
der structure [24–28]. Also considering spin ladder systems
provides a way to study the two dimensional systems [29].
Very recently, the studies of ferromagnetic (FM) inter-
chain coupling are becoming vive because such kinds of
materials are synthesized [26–28]. These materials display
some novel properties. A weak FM interchain coupling
may stabilize the long range AF order [26]. In external
magnetic field, such kind of materials may have unusual
properties [27]. Theoretically, the two-leg AF spin-ladder
model with FM rung has been investigated and found that
the ground state is the Haldane state with an excitation
gap for J⊥ > 0 (J⊥ is the interchain coupling) [18].

With above consideration for the spin systems, one
question may be raised: if the interchain and spin-phonon
interaction are all embodied in a finite size spin system,
what will happen? This is our main motivation of present
paper. We will study an S = 1/2 spin model, in which two
dimerized AF rings interact each other by a FM interring
coupling. We have found a nonzero critical interring cou-
pling, beyond which the ME transition is first order and
below which the transition is second order.
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2 Models and methods

In adiabatic approximation, the model studied in this pa-
per can be given as:

H = J

N∑

i=1,j=1,2

[1 + δi,j ]Si,j · Si+1,j

− J⊥
N∑

i=1

Si,1 · Si,2 +
K

2

N∑

i=1,j=1,2

δ2
i,j , (1)

where Si,j (respectively, δi,j) represents the spin-1/2 op-
erator at site i (respectively, the lattice distortion between
site i and i + 1) in the j th ring. K is the spring constant,
and N is lattice number in each ring. J and J⊥ (>0)
are the coupling strength of intraring and interring, re-
spectively. J will be taken as the unit of energy. Peri-
odic boundary condition is considered. The spin-lattice
coupling strength has been absorbed in the spring con-
stant [6].

The lattice distortion of Hamiltonian (1) with min-
imal ground state energy is obtained by the following
iterative procedure. First, by the Lanczos diagonaliza-
tion technique, we determine the lowest energy eigen-
value of (1) with a random initial distortion pattern {δi,j}
which satisfies the constraint

∑N
i=1,j=1,2 δi,j = 0. Then,

according to the equilibrium condition derived from the
Hellman-Feynman theorem [6],

Kδi,j + J 〈Si,j · Si+1,j〉 − J

N

N∑

i=1,j=1,2

〈Si,j · Si+1,j〉 = 0,

(2)
we update the lattice distortion until the iteration con-
verge. As already obtained in reference [6], in the system
we examined, we found either an undistorted or a dimer-
ized configuration (represented by δ∗) along the rings.

3 Results and discussion

The ground state properties of above model without in-
terring interaction (J⊥ = 0) has been well studied in ref-
erence [6], in which the authors have calculated the or-
der parameter: the lattice dimerization δ∗ and found a
ME phase transition from uniform phase (U) (δ∗ = 0) to
dimerized phase (D) (δ∗ �= 0). The phase transition order
depends on the value of spin S. In our model, dimeriza-
tion δ∗ is still a proper order parameter. Without loss of
generality, we only systematically study the model with
N = 6.

In the following we will present our results. Since the
order parameter δ∗ should be determined by ground state
energy, we first show the ground energy per site Eg as a
function of lattice distortion in Figure 1. By this figure,
one can find that there are two kinds of case. For small J⊥,
as shown in Figure 1a, the ground state energy has only
one stable point for a given K. By this stable point, one

Fig. 1. The δ dependence of the ground-state energy per site
for various values of K. (a) J⊥ = 0.5, from bottom to top,
K = 0.991, 0.992, 0.993, 0.994. (b) J⊥ = 2.0, from bottom to
top, K = 0.5500, 0.5625, 0.5705, 0.5712, 0.5751, 0.5780.

can obtain the dimerization δ∗. With increasing the spring
constant K to a finite value, δ∗ will be monotonously re-
duced to zero. That is to say, there is a critical value of
Kc, which is the transition point from D phase to U phase.
The transition is continuous. For large J⊥ case, the situ-
ation is quite different. In Figure 1b, one may find that
there are two minimal points in the ground state energy as
the spring constant is larger than a critical value K1

c . At
these two minimal points, one is δ∗ = 0 and another one is
δ∗ �= 0. They are corresponding to U phase and D phase,
respectively. At the lowest energy point, δ∗ �= 0 and the D
phase is a stable phase. And the U phase is a metastable
phase. With increasing K, the energy of minimal point
with non-zero value of δ∗ will be increased. At a critical
value of K2

c , the two minimal points have equal ground
state energy. That is to say, the D phase and U phase
coexist at this point. As K is increased from K2

c , the D
phase will become unstable (metastable dimerized phase),
and U phase turns into stable phase. When K reaches to
the third critical value K3

c , the minimal point with δ∗ �= 0
will totally disappear. So in the case of larger interring
coupling, at the K2

c the order parameter δ∗ will change
to zero from a finite value suddenly. Similar behaviors are
still found in dimerized S = 1 Heisenberg model [30]. This
phenomenon clearly implies a first order transition from
D phase to U phase.

With above analysis, we can give the spring constant
dependence of dimerization displacement under different
interring coupling in Figure 2. From this figure, one can
clearly find that, as J⊥ = 0, the dimerization displace-
ment may be continuously decreased to zero value with
increasing K. This result is consistent with the result for
single spin one-half AF ring [6]. In this case, the transi-
tion is second order or continuous. For small finite J⊥ (in
Fig. 2, J⊥ = 0.5), the order of transition from D phase to
U phase is same as that of J⊥ = 0. For large J⊥ (in Fig. 2,
J⊥ = 2.0 and 3.0), as the spring constant K is increased,
firstly the dimerization is reduced, then the lattice dimer-
ization δ∗ will jump to zero abruptly as K equals to a
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Fig. 2. The spring constant dependence of dimerization with
different interring coupling.

Fig. 3. Phase diagram for the spin-ladder model in the pa-
rameter space of interring coupling and spring constant. For
J⊥ > J∗

⊥, the dot, solid, and dash line correspond to K = K1
c ,

K2
c and K3

c , respectively. For J⊥ < J∗
⊥, the solid line corre-

sponds to K = Kc.

critical value K2
c . It may imply that it will occur a first

order transition, which also be found in single finite AF
ring for S > 1/2. Although there may exist a critical in-
terring coupling J∗

⊥, where the transition order changes
from second to first order, it is hard to identify J∗

⊥ only
by Figures 1 and 2. Thus we will try to find J∗

⊥ by other
ways.

Summarizing above results, a full phase diagram is
given in Figure 3. For clearly showing the phase transition
order, we plot Kc, K1

c , K2
c and K3

c dependence on inter-
ring coupling J⊥. The phase diagram in parameter space
(K, J⊥) can be divided into four regions. The phase in I
and II region is U phase. But in the region II there exists
a metastable dimerized phase. In region III and IV, the
system locates in D phase. In region III, the metastable
uniform phase will appear. In this phase diagram, there is
a very special point, at which the line of K1

c , K2
c and K3

c

will end and Kc will begin. This point can be denoted by
the critical value J∗

⊥. For J⊥ > J∗
⊥, the transition from D

phase to U phase is first order and J⊥ < J∗
⊥, the transi-

Fig. 4. The J⊥ dependence of ∆K = K3
c − K1

c . The solid
squares are numerical data and the solid lines are polynomial
fit with the sixth order.

Fig. 5. Fourth derivative of ground state energy with respect
to δ at δ = 0 as a function of interring coupling. The arrow
points to the critical interring coupling which divides the con-
tinuous transition and first order transition. For the dash line,
σ = 0.

tion is continuous. For identifying the value of J∗
⊥, we give

the J⊥ dependence of ∆K = K3
c − K1

c in Figure 4. The
solid squares are numerical results and the solid lines are
polynomial fit with the sixth order. With decreasing the
value of J⊥, ∆K will be reduced. At J⊥ = J∗

⊥, ∆K = 0.
This phenomenon means that the metastable phases to-
tally disappear and the transition order is changed. By
this figure, one can find that J∗

⊥ ≈ 1.16.
For confirming the value of J∗

⊥, we compute the fourth
derivative of ground state energy with respect to δ at δ =
0, σ = 2N∂4Eg/∂δ4

∣∣
δ=0

, which can be used to identify
the order of transition. According to the standard Landau-
Ginzburg approach, for continuous phase transition, σ >
0. For the first order transition, σ < 0 [6]. In Figure 5, we
give σ as a function of interring coupling J⊥. As J⊥ = 0,
σ = 419.6, which well agrees with the result in reference [6]
(σ = 423.3). For small nonzero J⊥, σ > 0, the transition
is continuous. With increasing J⊥, σ become smaller and
smaller. At J∗

⊥ ≈ 1.16, the sign of σ changes from positive
to negative. So the transition order may be changed from
second to first at J∗

⊥ = 1.16, which is consistent with the
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Fig. 6. The lnN dependence of lnJ∗
⊥ for N = 4, 6 and 8.

result obtained from Figure 4. One can also find that, as
J⊥ → ∞, σ may approach to the value in S = 1 single AF
ring [6].

Further, we investigate the size effect of the critical in-
terring coupling J∗

⊥. In Figure 6, the values of lnJ∗
⊥ against

lnN is plotted for N = 4, 6 and 8, in which the linearity
of lnJ∗

⊥ to lnN is fairly good. This means that J∗
⊥ may ap-

proach to zero according to power law as N → ∞. That is
to say, in thermodynamic limit, any nonzero FM interring
coupling will induce a first order ME transition in two-
leg spin ladder model. The effects of interchain coupling
in infinite system may give us some hints to understand
our results. In an infinite system, the properties of S = 1
Heisenberg chain can be understand by representing the
S = 1 model as two coupled S = 1/2 model [31]. This fact
may help us to explain the first order transition in our
results. That is to say, as the interring coupling is strong
enough, the behavior of the coupled rings belongs to the
class of S = 1 dimerized Heisenberg model, in which there
is a first order transition [30]. As the interring coupling is
small enough, the behavior of the coupled rings belongs
to the class of S = 1/2.

4 Conclusions

In conclusion, we numerically investigate an S = 1/2 spin
model where two dimerized AF rings interact with each
other by a FM interring coupling. It is shown that the ME
instabilities would be strongly affected by the interring
coupling. In this system, there exists a critical interring
coupling J∗

⊥ to divide the continuous transition and first
order transition and the critical value may depend on the
lattice number.
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27. M. Köppen, M. Lang, R. Helfrich, F. Steglich, P.
Thalmeier, B. Schmidt, B. Wand, D. Pankert, H. Benner,
H. Aoki, A. Ochiai, Phys. Rev. Lett. 82, 4548 (1999)

28. P. Gegenwarte, H. Aoki, T. Cichorek, J. Custers, N.
Harrison, M. Jaime, M. Lang, A. Ochiai, F. Steglich,
Physica B 312–313, 315 (2002)

29. E. Dagotto, T.M. Rice, Science 271, 618 (1996)
30. H. Onishi, S. Miyashita, Phys. Rev. B 64, 014405 (2001)
31. H.J. Schulz, Phys. Rev. B 34, 6372 (1986)


